
NRC-TR-2007-015

Mobile Trusted Module (MTM) - an introduction

Jan-Erik Ekberg, Markku Kyl�anp�a�a

Nokia Research Center Helsinki, Finland
http://research.nokia.com

November 14, 2007

Abstract:

This paper provides a brief overview of theMobile Trusted Module (MTM), its features and capabilities
with respect to TPMs. The viewpoint is the device manufacturer's, i.e. the functionalities de�ned
by the Remote Owner MTM (MRTM) pro�le of the speci�cation. Additionally the paper presents
a few use cases related to the technology, the implementation of a MRTM emulator and a proposal
for an API to control MTM functionality.

Index Terms:
platform security
mobile phones

NRC-TR-2007-015 Copyright c
 2007 Nokia

2

1 Introduction

The Mobile Trusted Module (MTM) is a security element and a newly approved TCG speci�cation [1],
[2] for use in mobile and embedded devices. Its origin lies in the TPM v. 1.2, but the mobile speci�cation
signi�cantly di�ers from the original speci�cation on a few issues:

1. The concept of secure boot is introduced. Many embedded devices and handsets in particular are
subject to regulatory approval. That in turn motivates the need for enforced integrity protection
of software in �elded devices, and secure boot, i.e., a boot sequence not only measured, but also
aborted on any non-approved state transition, is a vital building block for this security service.

2. The speci�cation explicitely supports implementation of the MTM as a functionality rather than
as a physical implementation in hardware. This makes it possible for device manufacturers to add
the MTM as an add-on to already deployed, proprietary security solutions.

3. In addition, the reference architecture takes into account the support of several parallel MTM
instances in the same device. Some will be discretionary (MTM exposed to user applications)
whereas e.g. the Device Manufacturer MTM by de�nition enforces security policy (mandatory
access control).

This paper introduces the new features of MTM in the context of a reference implementation. MTM
de�nes two interleaving pro�les depending on the entity that holds ownership of the functionality -
Mobile Remote Owner Trusted Module (MRTM) and the Mobile Local Owner Trusted Module (MLTM).
We have focused on the former pro�le (MRTM), since the Remote Owner speci�cation nicely contains
all the new functionality of the MTM with respect to TPMv1.2. Intended to be used either by the
device manufacturer or a carrier operator, the MTRM de�nes the security architecture and interfaces to
implement an integrity-protected device.

The paper starts by introducing the main system components and interfaces that make up the secure
boot concept in MTM - in particular the Reference Integrity Metric (RIM) certi�cates and their enforce-
ment. Then we propose new additions to the TSS interface for managing system parameters and the
secure boot concept in MTM. Our reference implementation is described in its own section. We conclude
with a few general ideas on how to use RIM certi�cates for a variety of security-related purposes and
�nally sum up the lessons learned in a conclusion section.

2 MTM setup and state

The MTM standard is
exible enough to accommodate several di�erent architectures for guaranteeing
the integrity of the MTM in the scope of secure boot, and the mechanisms used to provide root secrets
and immutable data to it. In this section we give a description of one setup that is acceptable within the
context of the MTM standard, while at the same time describing the essentials of some MRTM functions
and parameters. Please refer to the standards text for an exhaustive coverage of the secure boot phase.

2.1 Initial boot steps

For secure boot to be enforced, the system must have passed through two discrete states - the Engine
Reset and Engine Root-of-Trust Initialization phases prior to activating the MTM. The reset state simply
describes the fact that no software is running on the device prior to �rst MTM setup. The initialization
phase in which the software MTM is set up is in the standards context de�ned by a set of \Roots of
Trust", each of which describes a necessary security precondition to be satis�ed in order for the MTM
security to be complete. The Root of Trust for Enforcement (RTE) essentially states that platform-
speci�c mechanisms must be used to guarantee the integrity and authenticity of the MTM code and its
execution environment. Some form of device secret will be needed to establish a Root of Trust for Storage
(RTS), and some immutable or similarly protected code will constitute the Root of Trust for Veri�cation
(RTV), an engine that makes the initial measurements to be added to MTM prior to the MTM being
fully functional. A Root of Trust for Reporting (RTR) holds the secrets to sign PCR measurements for
attestation purposes. An RTS with suitable statefulness guarantees can be considered to contain also
the RTR and RTV.

NRC-TR-2007-015 Copyright c
 2007 Nokia

3

Figure 1: Our reference architecture

Figure 1 shows the reference model that we are targeting in this paper. The device has its own,
proprietary way of ensuring boot integrity. That concept is used to protect the initial boot sequence up
to the place where the MTM is loaded into a secure environment, e.g. to some on-processor memory.
We also assume the presence of at least one device secret (a.k.a. RTS), passed to the MTM when
loaded, to be used as a seed for con�dentiality services in the MTM (e.g. the seed for the SRK).
Additionally, immutable information for verifying veri�cation keys and further RIM certi�cates, called
the Root Veri�cation Authority Information (RVAI) needs to be presented to the MTM. Furthermore
the continued computational isolation of the MTM function with respect to e.g. the OS being loaded
and run must be ascertained in order for the architecture to be secure.

2.2 MTM internal state

In comparison to a TPM, MTM requires some additional persistent state information. Most of this is
stored in a new data structure speci�ed by the standard, called MTM PERMANENT DATA.

Most parameters and attributes will be elaborated on in later sections, but a brief overview follows.
The structure begins with a storage area for the attestation key AIK, used if it is pre-assigned to
an MRTM during manufacuring. The boolean
ag structure veri�edPCRs indicates the set of PCRs
constrained to b extended only by means of RIM certi�cate. The value of the bootstrap counter is
located in the permanent data, along with the unique identi�ers of the two other mandatory counters.
The bits of loadVeri�cationKeyMethods �eld specify what validation methods are supported when loading
veri�cation keys. The �eld integrityCheckRootData is used to store a value that can is used to bind the
value of a root veri�cation key to the MTM. The value is proprietary and can e.g. be a hash of the root
veri�cation key. The �eld internalVeri�cationKey, typically a HMAC key, is used to sign and validate
internal RIM certi�cates. The veri�cationAuth value is used for authorization of the MTM InstallRIM
command.

An additional bit, the loadVeri�cationRootKeyEnabled is also part of the global state, but located in
the MTM STANY FLAGS structure.

2.3 Initial keying

For a MRTM the concept of \Taking Ownership" of the functionality cannot be allowed if secure boot is
used. This option can therefore be disabled, and the SRK can be generated at manufacturing time and
inserted into the device.

Also, in a typical TPM, the process of enrolling identities to it is achieved through the EK and AIK
keys. As privacy is not necessarily a consideration e.g., for an MRTM, the identity is allowed to be
pre-set during manufacturing. In other words the EK is not necessary included in the MTM, and the
AIK and related certi�cates are pre-installed and cryptographically bound to the device before reaching
the customer.

Secure boot relies on a third semi-�xed con�guration - the de�nition of the PCR types. Each PCR can
be restricted to be updatable only by means of an update matching and validated by a RIM certi�cate.
The bit�eld de�ning this restriction for the individual PCRs can be updated only by the owner of the
MTM (which in the MRTM case is the manufacturer, so the PCR updates in this aspect are \remotely

NRC-TR-2007-015 Copyright c
 2007 Nokia

4

Figure 2: Secure boot operation (from spec.)

controlled"). This feature will be used as the basis for secure boot after the initial MRTM has been
activated.

2.4 MTM operation and RIM certi�cates

At a high level of abstraction the MTM runs in one of three states during the boot phase. Figure 2 shows
that the device boots into an initialization state, governed by the (non MTM) security of the platform.
On successful initialization the operation moves to a success state where it stays as long as the PCR
updates done using RIM certi�cates match a known state as given by the RIMs. On failing to reach
such a state the MTM moves to a failed state, becomes inoperational, and stays that way until a device
reboot. Additionally, when disabling the MTM the device may forcefully reboot, lock up, disable some
hardware interfaces or take any other approach necessary for preserving device security and integrity.

3 MRTM - the Device Manufacturer's MTM

To best illustrate the scope of the MTM from a device manufacturer's perspective, the minimal function-
ality of \a software" MRTM is next presented. As an illustration, the secure boot process is explained
embedded into the discussion.

During manufacturing, let's assume that there is no incentive for a device manufacturer to enroll new
identities to a deployed unit, so no endorsement key EK is installed in the device. Instead, the device
manufacturer decides on the AIK, SRK and RVAI keys, and con�gures them into the MRTM, e.g., by
means of a secure storage de�ned by the secure bootstrap. Also the veri�edPCRs list of PCRs that only
can be updated using RIM certi�cates is de�ned, and the loadVeri�cationRootKeyEnable
ag is set to
false - this disables updates to veri�edPCRs list and the RVAI. Thus, during MRTM operation, certain,
prede�ned PCRs can only be modi�ed using RIM certi�cates. The certi�cates are bound to so called
integrity keys positioned in a key hierarchy under the installed RVAI.

Let us assume that the MRTM is software. Thus, the device is assumed to contain the secure
bootstrap de�ned as RTE, and RTS can be extracted as part of the same bootstrap. The �rst part of
RTV boots in this context (e.g. from a ROM), launches the MRTM and its associated state. Then RTV
according to the speci�cation makes diagnostic measurements regarding itself and the roots-of-trust, and
feeds this information (using e.g. MTM VerifyRIMCertAndExtend) into PCRs 0 and 1. It also measures
and extends into PCRs the next code to be run, this presumably being some form of bootloader.

The secure boot illustration (�gure 3) shows the boot steps in a graphical form. An important
feature of the RTV is the termination of execution (or the forceful execution of some other action) if
any invocation of VerifyRIMCertAndExtend fails. This is the essence of the secure boot feature, and
essentially what sets the MTM apart from a traditional TPM.

3.1 Counters

Counters are included in the MTM speci�cation to achieve freshness guarantees (rollback protection) for
the secure boot procedure. No speci�c counters for data/key protection are mandatory.

NRC-TR-2007-015 Copyright c
 2007 Nokia

5

Figure 3: Secure boot

Three counters need to be managed by the underlying platform architecture. The bootstrap counter
is initialized to 0, and runs up to a minimum of 31 steps. This counter is intended to protect the MTM
bootstrap, and there must be a one-to-one correspondence between a RIM certi�cate for the bootstrap
(the \�rmware" in �g. 3) and a speci�c code version. It is critical for the integrity of �rmware upgrades
in secure boot systems that this correspondence holds and the small range of values makes it possible to
implement the counter as (31) one-time programmable bits in hardware.

The implementation of a separate RIMProtect counter (running up to a minimum of 4095 steps) is
also required. Even if any RIM certi�cate can be bound to the bootstrap version, binding certi�cates to
RIMProtect enables a higher resolution of (software) upgrades. Still, the RIMprotect counter is singular,
i.e. any security-relevant upgrade needed by any functionality bound to this counter induces the need
for renewal of all other RIM certi�cates bound to RIMprotect, an issue that is partially solved by the
introduction of RIM internal certi�cates.

A third mandatory counter, the StorageProtect counter, is intended to serve as state-protection for
the RTS-protected storage. It is not addressed in any MTM interface function, and its minimal size
(4095 bytes) implies restrictions in use frequency.

The RIMProtect counter is updated by the possibly user-authenticated TPM IncrementCounter, whereas
the Bootstrap counter can only be updated by the MTM IncrementBootstrapCounter command, its
use governed by a RIM certi�cate. This is in line with the estimated use of the Bootstrap counter
- it is used when a security breach in the bootstrap is found whereby the authorization secret of a
TPM IncrementCounter command could have been compromized. In addition to RIM certi�cates, veri�-
cation keys can also be bound to the abovementioned counters.

To be noted is that the MTM speci�cation is somewhat lax on the platform support needed for
counter protection, but intends to be more strict in future standard versions. For implementations of
the v 1.0 speci�cation, the statefulness guarantees provided by the counters will vary between devices.

3.2 RIM Certi�cates

The trust bindings related to the RIM certi�cates is multi-faceted. A certi�cate is typically bound to
a counter and one or more PCR values. An external certi�cate is signed by a veri�cation key, whereas
internal ones are essentially tickets for the same data structure, produced by the MTM instance itself
for future reference regarding the validity of the certi�cate. These two mechanisms are examined in the
following:

NRC-TR-2007-015 Copyright c
 2007 Nokia

6

Figure 4: State update with external RIM certi�cates

3.2.1 External RIM certi�cates

The ver�cation keys form a hierarchy with respect to the MTM - the root key of the hierarchy is bound
to the root veri�cation authority identi�er (RVAI), which depending on the MTM implementation can
vary, but typically would be a hash of the root veri�cation key. The RVAI can be made unmodi�able by
the MTM LoadVeri�cationRootKeyDisable command, turning the internal loadVeri�cationRootKeyEnabled

ag to false. The same internal state bit disables the MTM SetVeri�edPCRSelection command, �xing
the set of PCR registers only modi�able by the use of RIM certi�cates. Neither command will ever be
needed in an MRTM that is factory-initalized with pre-set values in the RVAI and veri�edPCRSelection
parameters and the loadVeri�cationRootKeyEnabled bit permanently set to false.

When loading a veri�cation key (using LoadVeri�cationKey) either a signature that is part of the
veri�cation key structure is validated against the key indicated by the parent key handle of the veri�cation
key being loaded, or, in case of the loaded key being the root key, against the RVAI in any appropriate
manner. Thus every successfully loaded veri�cation key is guaranteed to be part of a veri�cation key
hierarchy.

When a PCR update is initiated by a MTM VerifyRIMCertAndExtend, the signature on the external
RIM certi�cate is checked by a loaded veri�cation key indicated by a key handle in the command. If the
signature matches, and the preconditions, counter value equivalence and PCR contents match, a given
PCR is updated with a value stated in the RIM certi�cate. A managerial function MTM VerifyRIMCert
is included to check a certi�cate against a veri�cation key and the fact that the counter constraint of
the certi�cate satis�es either the current or any future counter value for the referred counter. In the
same manner, a RIM certi�cate is also used for the authorization of an MTM IncrementBootstrapCounter
command, which sets the bootstrap counter value to the value indicated in the RIM certi�cate on the
condition that the veri�cation key referenced by the certi�cate is a key that by parametrization is allowed
to control bootstrap counter updates.

3.2.2 Internal RIM certi�cates

External certi�cates can be \internalized", i.e., rather than validating the certi�cate against a veri�cation
keys on every load, the validation can be done once, whereafter the MTM can convert the external
certi�cate into an internally validated certi�cate. The constraining relations of an internally validated
certi�cate are similar to an external one, but the signature is a HMAC on a key only known to the MTM,
present for the singular purpose of signing internal certi�cates. The conversion process is executed using
the MTM InstallRIM command. Internal certi�cates can only be tied to the RIMprotect counter.

NRC-TR-2007-015 Copyright c
 2007 Nokia

7

A couple of details regarding certi�cate internalization are worthy of explanation. First, the autho-
rization of the InstallRIM command is not based on veri�cation keys, but on a TPM authentication
token on a key veri�cationAuth, assumed to be placed into the MRTM at the time of manufacture - there
is no way to modify or change this symmetric key. Additionally, the veri�cation process is assumed to be
completed by an MTM-external component (knowing the veri�cationAuth) validating the key hierarchy
needed for the external certi�cate to be internalized. The MRTM can be used as \an oracle" for this - on
accepting integrity keys, their validity is assured. Also, the validity check of the external certi�cate can
make use of the MTM VerifyRIMCert command, and deduce correctness from return parameters. Only
after these checks, the external party is assumed to produce the authenticatedMTM InstallRIM command
for RIM certi�cate internalization. Thus the validity of the certi�cate installation is not guaranteed by
the MTM itself, but rather by any entity with knowledge of veri�cationAuth.

A second detail regarding the internalization of certi�cates is that the internal certi�cate will have a
counter binding of the current RIMProtect counter value plus one, independently of the counter reference
value of the external certi�cate. Omitting counter checks during the install command is in line with the
trust model of the command, and setting the counter reference to one more than the current counter
value makes it possible to install many certi�cates and make them all usable with one update of the
RIMProtect counter.

The process of installing RIM certi�cates into MTM can be governed by a revocation mechanism
built around RIM Auth Validity Lists and RIM Validity Lists [1]. The �rst one is a fresh list of currently
valid veri�cation keys that are signed by a given, higher-level veri�cation key. If a key is not on the
list, it must be assumed to be revoked. A similar construct is available for the actual certi�cates in the
form of the RIM validity lists, maintained by the authorities behind the ver�cation keys that sign the
certi�cates. These lists are based on the notion of universal time, and it is assumed that the device
managing the validity lists has a reasonably accurate and secure clock to support the decisions based on
these lists.

4 Supporting multiple MTMs in a device

The reference architecture [1] strongly brings forward the idea of interlocked MTMs in a single device,
based on three intehrity-protected lists - the device manufacturer's mandatory engines, the device owner's
mandatory engines, and the device owner's discretionary engines. The basic assumption is that all
mandatory engines should be securely activated as part of a proper boot, and failure to do so should be
treated as a boot error. The integrity-protected lists would be controlled by the device manufacturer and
owner respectively. For software implementaitions, it is also to be assumed that the local security (RTV,
RTS) of all engines are boostrapped from the device MRTM whereas the identity-related roots-of-trust
may and probably should vary between engines. This architecture makes it possible to have separate
MTM service domains, where unique engines intended to serve di�erent stakeholders and applications
are co-located in the same device. In a general sense, the same architectural ideas have already been
presented in the TPM domain, a good example being research conducted around virtual TPMs, e.g., by
IBM Research [7].

5 Other MTM commands

The MRTM inherits a fair bit of mandatory functionality from TPMv1.2. The basic storage functions
related to binding and sealing are all supported, and since the PCRs de�ned in veri�edPCRs also can be
used for the PCR binding, a new (higher) dimension of con�gurability for services like secure storage
is achieved. Signing and key certi�cation are also supported. Veri�cation keys can be evicted using
TPM FlushSpeci�c. For PCR updates in the non-veri�ed set the basic TPM Extend is available, and for
reporting at least TPM Quote is present in all MTMs. However, especially in MRTMs there may be no
EK (no support for provacy CA:s) and AIKs might be pre-installed, so the attestation function might
be limited to one certifying authority. In general, delegation, timing, non-volatile memory services and
migration, as well as most administrative maintenance commands are declared optional in the context
of MTMv1.

NRC-TR-2007-015 Copyright c
 2007 Nokia

8

6 MTM implementation

For validating the MTM speci�cation we have added MTM speci�c functions to an open source TPM
emulator [4] and made some modi�cations to existing TPM routines as speci�ed in [2]. The code
implements the mandatory command set of an MRTM, as well as optional MRTM and MLTM functions
inherited from [4].

6.1 TSS API

TCG has not de�ned any new TSS functions for the MTM-functionality. The main reason for this is
that the MTM engines are primarily targeted for embedded environments and for the booting phase
(MRTM), where consistent and standardized APIs are of less relevance than for TPMs, which primarily
are intended to be used by applications. Even so, a consistent API is valuable also in closed environments
if it represents a known good design, and in the context of MLTMs RIM certi�cates might also be used
by applications. We here propose an API for this purpose, which has emerged from the need to test our
own MTM implementation.

We have extended the TCG standardized TSS API with necessary functions to access MTM func-
tionality. This could be a starting point for de�ning mobile speci�c TSS (MTSS) or merging these
functions to TSS. In this work, we have intentionally avoided to de�ne new types in TSS level, instead
MTM speci�c types (RIM certi�cates and veri�cation keys) are transferred as raw bu�ers, the contents
re
ecting the byte structures de�ned by the MTM speci�cation.

The following new TSS functions have been de�ned:

TSS_RESULT Tspi_MTM_InstallRIM
(
TSS_HTPM hTPM, // in
UINT32 ulRimCertSize, // in
BYTE * rimCertData, // in
UINT32 * outCertSize, // out
BYTE ** outCertData // out
);

TSS_RESULT Tspi_MTM_VerifyRIMCert
(
TSS_HTPM hTPM, // in
UINT32 ulRimCertSize, // in
BYTE * rimCertData, // in
UINT32 hVerificationKey // in
);

TSS_RESULT Tspi_MTM_VerifyRIMCertAndExtend
(
TSS_HTPM hTPM, // in
UINT32 ulRimCertSize, // in
BYTE * rimCertData, // in
UINT32 hVerificationKey, // in
TCPA_PCRVALUE * pPcrValue // out
);

TSS_RESULT Tspi_MTM_LoadVerificationKey
(
TSS_HTPM hTPM, // in
UINT32 hParentKey, // in
UINT32 verificationKeySize,// in
BYTE * verificationKeyData,// in
UINT32 * hVerificationKey, // out
BYTE * loadMethod // out
);

NRC-TR-2007-015 Copyright c
 2007 Nokia

9

Figure 5: Architecture of the MTM emulator implementation

TSS_RESULT Tspi_MTM_LoadVerificationRootKeyDisable
(
TSS_HTPM hTPM // in
);

TSS_RESULT Tspi_MTM_SetVerifiedPCRSelection
(
TSS_HTPM hTPM, // in
TCPA_PCR_SELECTION * selection // in
);

TSS_RESULT Tspi_MTM_IncrementBootstrapCounter
(
TSS_HTPM hTPM, // in
UINT32 ulRimCertSize, // in
BYTE * rimCertData, // in
UINT32 hKey // in
);

The respective purpose of each command is self-explanatory, as the commands re
ect MTM func-
tions in a one-to-one manner. Error values or command success is indicated by the TSS RESULT pa-
rameter. For each command above, a corresponding tpm tools user command has been written. These are
tpm setveri�edpcrselection, tpm incrementbootstrapcounter, tpm installrim, tpm loadveri�cationrootkeydisable,
tpm loadveri�cationkey as well as tpm verifyrimcert that also executes the extend operation conditional to
an input parameter.

6.2 Implementation details

The original open source TPM emulator [4] is a Unix daemon process that can be controlled using
either Unix domain socket or by accessing /dev/tpm device. The device interface is provided mainly for
backwards compatibility. The emulator has been written using C programming language. The software
has its own small cryptographic library that is based on open source MP library [5].

The original code contains a few Linux dependencies (macros from Linux kernel source) and there
is an option to build a Linux kernel module that provides the device /dev/tpm. In our implementation
all Linux dependenices have been removed and the modi�ed MTM/TPM emulator can also use Internet
domain sockets, as shown in �g 5.

MTM speci�c data structures have been added alongside TPM permanent data structures in the TPM
emulator. Additionally utility functions to marshal and unmarshal MTM speci�c data structures were de-
veloped and command handlers have been extended to include the new MTM functionality. Test utilities
have been developed to create, sign and display TPM VERIFICATION KEY and TPM RIM CERTIFICATE
structures. There are also test utilities for MTM speci�c commands.

The emulator has been connected to a modi�ed TrouSerS [6] TSS stack using a socket interface. Unit
test tools and commands have been written in the spirit of the TrouSerS tpm-tools test commands for
testing and using the new MTM interfaces and functions in the emulator. The implementation has been
validated in Linux, but porting the emulator to other POSIX-compliant architectures is straight-forward.

As the MTM speci�cation contains lots of optional functionality and features, a policy �le has been
added for con�guring the overall MTM functionality of the emulator for any given purpose or to match
a given architecture.

NRC-TR-2007-015 Copyright c
 2007 Nokia

10

6.3 Example architecture for use-cases discussion

The following listing contains a simple example session. The MTM emulator mtmd is �rst started
together with the TrouSerS daemon tcsd. The MTM emulator is connected to tcsd using socket interface
and the tpm-tools commands connect to tcsd using a socket interface as well. PCR 9 is included
in the veri�edPCRs list. Thus an attempt to extend this PCR with tpm extend fails. The command
tpm loadveri�cationkey is used to load one TPM VERIFICATION KEY into MTM. The command returns
a handle. The command tpm verifyrimcert is used to verify a RIM certi�cate using the veri�cation key
handle as a parameter (-r option) and to extend a PCR register (-e option). The PCR register to be
extended is speci�ed in the RIM certi�cate.

$ service start mtmd
$ service start tcsd
$ tpm_readpcr -n 9
PCR[09]: 0xf443319695979917a03b717049235423874d2716
$ tpm_extend -n 9

-e 0xae97c310289ce1eb417f6edbfe47ba091eda4467
PCR extend failed.
$ tpm_loadverificationkey -i test.key
Handle is 0x123
Verification key installed
$ tpm_verifyrimcert -i test.cert -r 123 -e
RIM certificate successfully verified.
PCR extended.
$ tpm_readpcr -n 9
PCR[09]: 0x2b289e32d928a75e08fc01e730dec3135dc8c680

7 Examples and Use Cases

By inclusion of the RIM certi�cates, the MTM is more capable than a securely booted TPM. This
section motivates this statement by introducing a few examples related to an imaginary embedded
device depicted in �gure 6 - something akin to a mobile phone. The device deploys secure boot with a
trusted domain consisting of at least a bootloader, whereafter a customer might deploy his or her own
OS, although the device comes with a certi�ed OS and applications as well. The example is mirrored to
use the underlying security architecture of Texas Instruments M-shield [3], but similar services can be
found with many (mobile) core and chip vendors.

An important part of a mobile chip(set) is the HW part of the radio stack - sometimes little more
the A/D converters but typically a fair bit of algorithms and state-machine logic as well. If the radio
(frequency) is regulated, the access to this functionality should be restricted to the software certi�ed for
the purpose. This can be achieved by

1. wiring the radio enable/disable operation (I/O addresses) to be part of the secure processing
environment address space (and thus be visible only for programs in that space)

2. de�ning the extension of one prede�ned PCR to also trigger the activation of the radio (as the
MTM is software to be run in the secure environment, this is trivially achieved)

3. locking the PCR in question to be in the veri�edPCRs set and

4. issuing a RIM certi�cate from the aggregate PCR set of the approved software stack (up to OS
and application) to extend the PCR in question

The example shows that enforcement is trivial to achieve - one simple hardware constraint (item
(1)) which is reasonable to implement with or without MTM, and a \non-standard" modi�cation to the
MTM implementation (item (2)). All software can use the MTM interfaces as is, and the enforcement
policy is software agnostic in the sense that OS upgrades and old-version revocation using the MTM
counters can be de�ned in MTM terms over MTM interfaces.

The same logic can be transported to a di�erent aspect of hardware con�guration. In contemporary
manufacturing, the price per unit drops as quantities go up. On the other hand, market segmentation

NRC-TR-2007-015 Copyright c
 2007 Nokia

11

Figure 6: Example architecture

- having speci�c device models for speci�c user groups - is important. If we consider e.g. a video DSP,
it might be bene�cial for all stakeholders to include the DSP in all hardware, but enable it (and pay
license costs to the designer of the DSP) based on RIM certi�cate activation in those devices where it is
used. Even users could be allowed to upgrade their (restricted) devices in this manner. The logic above
would be exactly the same, except that some unique device identi�er (HW serial number) should always
be added to some PCR to be able to produce RIM certi�cates dedicated to speci�c devices.

Another example, given in the speci�cation ([2]), is to use PCRs, governed by RIM certi�cates, as a
basis for supporting multi-stakeholder booting. Each stakeholder can use a di�erent PCR to address its
state, and stakeholders can address each others \result PCRs" as a condition for their own loading. This
decouples the boot integrity mechanism from the versioning and update process related to the speci�c
code of each individual stakeholder.

All previous examples also highlight the bene�t to dedicate PCR registers for speci�c purposes in a
given MTM. As the possibility for software implementation exists given the right hardware environment,
it is feasible to include many more PCRs than the bare minimum required by the speci�cation. With
numerous PCRs available, constrained by the RIM certi�cate mechanism, a system can be made to re-
semble a property-based architecture. This in turn allows for greater
exibility in other TPM operations,
i.e. providing keying support or sealing data for known (property-de�ned) states or setups.

8 Conclusions

The authors feel that the MTM technology introduces some powerful new concepts to the TPM research
arena, and this paper intends to highlight these for the \TPM-aware" reader in a concise package.

We have also augmented the tpm emulator by Mario Strasser as a validation exercise to also include
MTM version 1 functionality. APIs and unit test interfaces are also included, and this fundament can
serve as a basis for further experimentation and development in the scope of MTM evolution and/or
service development on MTMs.

NRC-TR-2007-015 Copyright c
 2007 Nokia

12

9 Abbreviations

A/D Analog-to-Digital

AIK Attestation Identity Key

API Application Programming Interface

DSP Digital Signal Processor

EK Endorsement Key

HMAC keyed-Hash Message Authentication Code

HW Hardware

I/O Input/Output

MLTM Mobile Local-owner Trusted Module

MRTM Mobile Remote-owner Trusted Module

MTM Mobile Trusted Module

MTSS Mobile TCG Software Stack

OS Operating System

PCR Platform Con�guration Register

RIM Reference Integrity Metric

ROM Read-Only Memory

RTE Root of Trust for Enforcement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

RTV Root of Trust for Veri�cation

RVAI Root Veri�cation Authority Information

SRK Storage Root Key

TCG Trusted Computing Group

TPM Trusted Platform Module

TSS TCG Software Stack

NRC-TR-2007-015 Copyright c
 2007 Nokia

13

References

[1] TCG Mobile Reference Architecture, Speci�cation v. 1.0, revision 1, 12 June 2007,
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-
1.0.pdf

[2] TCG Mobile Trusted Module, Speci�cation v. 1.0, revision 1, 12 June 2007,
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf

[3] Texas Instruments M-shield, http://focus.ti.com/general/docs/wtbu/-
wtbugencontent.tsp?templateId=6123&navigationId=12316&contentId=4629

[4] Mario Strasser: TPM emulator, software implementation,
https://developer.berlios.de/projects/tpm-emulator/

[5] GNU MP, GNU Multiple Precision Arithmetic Library, http://gmplib.org/

[6] TrouSerS, TCG TSS implementation, http://trousers.sourceforge.net/

[7] Virtual Trusted Platform Module, IBM Research, software and architecture,
www.research.ibm.com/ssd vtpm/

NRC-TR-2007-015 Copyright c
 2007 Nokia

