

KXTF9 Series

Accelerometers and Inclinometers

FEATURES

Ultra-Small Package - 3x3x0.9mm LGA

User-selectable G Range

User-selectable Output Data Rate

Directional Tap/Double-TapTM Detection Algorithm

Active/Inactive Detection Algorithm

Device-orientation Detection Algorithm

Digital I²C 8-bit or 12-bit Resolution

Digital High-Pass Filter Outputs

Low Power Consumption

Lead-free Solderability

Excellent Temperature Performance

High Shock Survivability

Factory Programmable Offset and Sensitivity

Self-test Function

MARKETS APPLICATIONS

Mobile Phones and Mobile Internet Devices

User Interface

Gesture Recognition

Power Management

Active/Inactive Monitoring

Game Controllers and Computer Peripherals

Inclination and Tilt Sensing

User Interface

Power Management

Activity Monitoring

Gesture Recognition

Health Care and Fitness

Static and Dynamic Acceleration

Activity Monitoring

Gesture Recognition

Personal Navigation Devices

E-Compass Dead Reckoning

PROPRIETARY TECHNOLOGY

These high-performance silicon micromachined linear accelerometers and inclinometers consist of a sensor element and an ASIC packaged in a 3x3x0.9mm Land Grid Array (LGA). The sensor element is fabricated from single-crystal silicon with proprietary Deep Reactive Ion Etching (DRIE) processes, and is protected from the environment by a hermetically-sealed silicon cap at the wafer level

The KXTF9's Directional Tap/Double-TapTM detection feature recognizes single-tap and double-tap input and reports the acceleration axis and direction from which each tap originated, enabling up to 12, user-defined, function commands. Its active/inactive algorithm reports changes in a device's motion state, either moving (active) or not moving (inactive), and the orientation-detection feature reports changes in landscape, portrait, face-up, and face-down conditions. A highly-manufacturable product with consistent product performance across use conditions, the KXTF9 operates across a supply voltage of 1.8V to 3.6V DC.

The sensor element functions on the principle of differential capacitance. Acceleration causes displacement of a silicon structure resulting in a change in capacitance. The sense element design utilizes common mode cancellation to decrease errors from process variation and environmental stress. An ASIC, using a standard CMOS manufacturing process, detects and transforms capacitance changes into an analog voltage, which is proportional to acceleration. Analog signals are further processed into digital signals and within embedded digital algorithms. The device communicates to the system via I²C bus interface

36 Thornwood Dr. - Ithaca, NY 14850 USA tel: 607-257-1080 - fax: 607-257-1146 - www.kionix.com - info@kionix.com

KXTF9 Series

Accelerometers and Inclinometers

PERFORMANCE SPECIFICATIONS

The performance parameters below are programmed and tested at 1.8 volts. However, the device can be factory programmed to accept supply voltages from 1.8V to 3.6V. Performance parameters will change with supply voltage variations.

	PERFORM	ANCE SPECIFICATIONS			
PARAMETERS	UNITS	KXTF9-4100	CONDITION		
Range	g	±2.0, ±4.0, ±8.0	User-selectable full-scale output range		
Sensitivity ¹	counts/g	64, 32, 16 typical	(8-bit)		
	counts/ g	1024, 512, 256 typical	(12-bit)		
Sensitivity vs. Temp	%/°C	± 0.01 (xy) ± 0.03 (z) typical			
0g Offset vs. Temp.	mg/°C	±0.7 (xy) ±0.4 (z) typical			
Mechanical Resonance ²	Hz	3500 (xy) 1800 (z) typical	-3dB		
Output Data Rate (ODR) ³	Hz	25 min; 800 max			
Bandwidth ⁴	Hz	ORD/2 typical			
Non-Linearity	% of FS	1.0 typical	% of full scale output		
Cross-axis Sensitivity	%	2.0 typical			
I ² C Communication Rate	KHz	400 max			
Power Supply	V	1.8 typical	Factory programmable, 1.8V - 3.6V		
	μΑ	230 typical	RES = 0; Operating		
Current Consumption	μΑ	570 typical	RES = 1; Operating		
	μΑ	0.1 typical	Standby		
	ENVIRONM	IENTAL SPECIFICATIONS			
PARAMETERS	UNITS	KXTF9-4100	CONDITION		
Operating Temperature	°C	-40 to 85	Powered		
Storage Temperature	°C	-55 to 150	Un-powered		
Mechanical Shock	g	5000, 0.5 msec 10,000, 0.2 msec	Powered or un-powered, halversine		
ESD	V	2000	Human body model		

¹ Resolution and acceleration ranges are user selectable via I²C.

ORDERING GUIDE

Product	Output	Axis(es) of Sensitivity	Range (g)	Sensitivity (counts/g)	Offset (counts)	Operating Voltage (V)	Temperature (°C)	Package
KXTF9-1026	Digital I ² C	XYZ	2, 4, 8	64,32,16 (8-bit) 1024, 512, 256 (12-bit)	0	2.6	-40 to +85	3x3x0.9mm LGA
KXTF9-4100	Digital I ² C	XYZ	2, 4, 8	64,32,16 (8-bit) 1024, 512, 256 (12-bit)	0	1.8	-40 to +85	3x3x0.9mm LGA

² Resonance as defined by the dampened mechanical sensor.

³ User selectable.

⁴ Dependent on ODR and 8-bit or 12-bit resolution.